Numerical field calculations considering the human subject for engineering and safety assurance in MRI.

نویسنده

  • Christopher M Collins
چکیده

Numerical calculations of static, switched, and radiofrequency (RF) electromagnetic (EM) fields considering the geometry and EM properties of the human body are used increasingly in MRI to explain observed phenomena, explore the limitations of various approaches, engineer improved techniques and technology, and assure safety. As the static field strengths and RF field frequencies in MRI have increased in recent years, the value of these methods has become more pronounced and their use has become more widespread. With the recent growth in parallel reception techniques and the advent of transmit RF arrays, the utility of these calculations will become only more critical to continued progress of MRI. Proper relation of field calculation results to the MRI experiment can require significant understanding of MRI physics, EM field principles, MRI coil hardware, and EM field safety. Here some fundamental principles are reviewed and current approaches and applications are catalogued to aid the reader in finding resources valuable in beginning field calculations for their own applications in MR, with an eye to the current needs and future utility of numerical field calculations in MRI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects.

Radiofrequency magnetic fields are critical to nuclear excitation and signal reception in magnetic resonance imaging. The interactions between these fields and human tissues in anatomical geometries results in a variety of effects regarding image integrity and safety of the human subject. In recent decades, numerical methods of calculation have been used increasingly to understand the effects o...

متن کامل

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

A Common Weight Multi-criteria Decision analysis-data Envelopment Analysis Approach with Assurance Region for Weight Derivation from Pairwise Comparison Matrices

Deriving weights from a pairwise comparison matrix (PCM) is a subject for which a wide range of methods have ever been presented. This paper proposes a common weight multi criteria decision analysis-data envelopment analysis (MCDA-DEA) approach with assurance region for weight derivation from a PCM. The proposed model has several merits over the competing approaches and removes the drawbacks of...

متن کامل

Safety Considerations on MRI Systems for Firefighters and Paramedics

Background and Objectives: The use of Magnetic Resonance Imaging (MRI) systems is on the rise and the number of installed systems is constantly increasing all over the world. This raises the possibility for emergency personnel to get in contact with these systems. However, the clothing and working material of paramedics and firefighters is not designed for the use on magnets. M...

متن کامل

Does Exposure to Static Magnetic Fields Generated by Magnetic Resonance Imaging Scanners Raise Safety Problems for Personnel?

MRI workers are occupationally exposed to static and time-varying gradient magnetic fields.  While the 24-hour time-averaged exposure to static magnetic fields is about a few mT, the maximum static field strength can be as high as 500 mT during patient setup. Over the past several years, our laboratory has performed extensive experiments on the health effects of exposure of animal models and h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NMR in biomedicine

دوره 22 9  شماره 

صفحات  -

تاریخ انتشار 2009